7,934 research outputs found

    Numerical Range and the Dynamics of a Rational Function

    Full text link
    Sometimes we obtain attractive results when associating facts to simple elements. The goal of this work is to introduce a possible alternative in the study of the dynamics of rational maps

    HMM-based speech synthesiser using the LF-model of the glottal source

    Get PDF
    A major factor which causes a deterioration in speech quality in HMM-based speech synthesis is the use of a simple delta pulse signal to generate the excitation of voiced speech. This paper sets out a new approach to using an acoustic glottal source model in HMM-based synthesisers instead of the traditional pulse signal. The goal is to improve speech quality and to better model and transform voice characteristics. We have found the new method decreases buzziness and also improves prosodic modelling. A perceptual evaluation has supported this finding by showing a 55.6 % preference for the new system, as against the baseline. This improvement, while not being as significant as we had initially expected, does encourage us to work on developing the proposed speech synthesiser further

    On the charge radius of the neutrino

    Get PDF
    Using the pinch technique we construct at one-loop order a neutrino charge radius, which is finite, depends neither on the gauge-fixing parameter nor on the gauge-fixing scheme employed, and is process-independent. This definition stems solely from an effective proper photon-neutrino one-loop vertex, with no reference to box or self-energy contributions. The role of the WWWW box in this construction is critically examined. In particular it is shown that the exclusion of the effective WW box from the definition of the neutrino charge radius is not a matter of convention but is in fact dynamically realized when the target-fermions are right-handedly polarized. In this way we obtain a unique decomposition of effective self-energies, vertices, and boxes, which separately respect electroweak gauge invariance. We elaborate on the tree-level origin of the mechanism which enforces at one-loop level massive cancellations among the longitudinal momenta appearing in the Feynman diagrams, and in particular those associated with the non-abelian character of the theory. Various issues related to the known connection between the pinch technique and the Background Field Method are further clarified. Explicit closed expressions for the neutrino charge radius are reported.Comment: 26 pages, plain Latex, 7 Figures in a separate ps fil

    Charge and Magnetic Moment of the Neutrino in the Background Field Method and in the Linear R_xi^L Gauge

    Get PDF
    We present a computation of the charge and the magnetic moment of the neutrino in the recently developed electro-weak Background Field Method and in the linear RΟLR_{\xi}^L gauge. First, we deduce a formal Ward-Takahashi identity which implies the immediate cancellation of the neutrino electric charge. This Ward-Takahashi identity is as simple as that for QED. The computation of the (proper and improper) one loop vertex diagrams contributing to the neutrino electric charge is also presented in an arbitrary gauge, checking in this way the Ward-Takahashi identity previously obtained. Finally, the calculation of the magnetic moment of the neutrino, in the minimal extension of the Standard Model with massive Dirac neutrinos, is presented, showing its gauge parameter and gauge structure independence explicitly.Comment: Latex, 19 pages, 9 PS and 10 EPS figures. One reference added. Appendix B modified and Appendices C-E eliminated. To be published in Eur. Phys. J.

    One-Loop Electroweak Corrections to the Muon Anomalous Magnetic Moment Using the Pinch Technique

    Get PDF
    The definition of the physical properties of particles in perturbative gauge theories must satisfy gauge invariance as a requisite. The Pinch Technique provides a framework to define the electromagnetic form factors and the electromagnetic static properties of fundamental particles in a consistent and gauge-invariant form. We apply a simple prescription derived in this formalism to check the calculation of the gauge-invariant one-loop bosonic electroweak corrections to the muon anomalous magnetic moment.Comment: 6 pages and 1 eps figur

    Migraine, Fibromyalgia, and Depression among People with IBS: A Prevalence Study

    Get PDF
    BACKGROUND. Case descriptions suggest IBS patients are more likely to have other disorders, including migraine, fibromyalgia, and depression. We sought to examine the prevalence of these conditions in cohorts of people with and without IBS. METHODS. The source of data was a large U.S. health plan from January 1, 1996 though June 30, 2002. We identified all people with a medical claim associated with an ICD-9 code for IBS. A non-IBS cohort was a random sample of people with an ICD-9 code for routine medical care. In the cohorts, we identified all claims for migraine, depression, and fibromyalgia. We estimated the prevalence odds ratios (PORs) of each of the three conditions using the Mantel-Haenszel method. We conducted quantitative sensitivity analyses to quantify the impact of residual confounding and in differential outcome identification. RESULTS. We identified 97,593 people in the IBS cohort, and a random sample of 27,402 people to compose the non-IBS comparison cohort. With adjustment, there was a 60% higher odds in the IBS cohort of having any one of the three disorders relative to the comparison cohort (POR 1.6, 95% CI 1.5 – 1.7). There was a 40% higher odds of depression in the IBS cohort (POR 1.4, 95% CI 1.3 – 1.4). The PORs for fibromyalgia and migraine were similar (POR for fibromyalgia 1.8, 95% CI 1.7 – 1.9; POR for migraine 1.6, 95% CI 1.4 – 1.7). Differential prevalence of an unmeasured confounder, or imperfect sensitivity or specificity of outcome detection would have impacted the observed results. CONCLUSION. People in the IBS cohort had a 40% to 80% higher prevalence odds of migraine, fibromyalgia, and depression

    From vortex molecules to the Abrikosov lattice in thin mesoscopic superconducting disks

    Full text link
    Stable vortex states are studied in large superconducting thin disks (for numerical purposes we considered with radius R = 50 \xi). Configurations containing more than 700 vortices were obtained using two different approaches: the nonlinear Ginzburg-Landau (GL) theory and the London approximation. To obtain better agreement with results from the GL theory we generalized the London theory by including the spatial variation of the order parameter following Clem's ansatz. We find that configurations calculated in the London limit are also stable within the Ginzburg-Landau theory for up to ~ 230 vortices. For large values of the vorticity (typically, L > 100), the vortices are arranged in an Abrikosov lattice in the center of the disk, which is surrounded by at least two circular shells of vortices. A Voronoi construction is used to identify the defects present in the ground state vortex configurations. Such defects cluster near the edge of the disk, but for large L also grain boundaries are found which extend up to the center of the disk.Comment: 15 pages, 10 figures, RevTex4, submitted to Phys. Rev.
    • 

    corecore